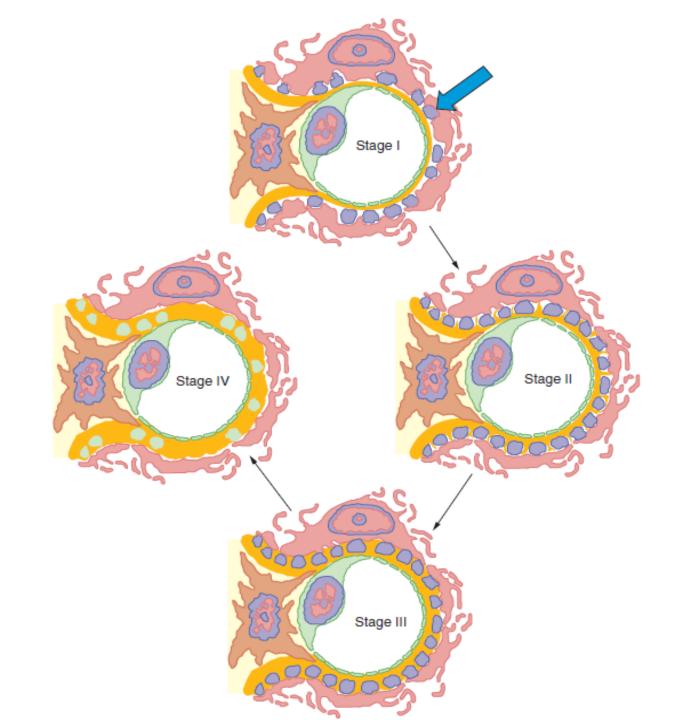


Membranous nephropathy

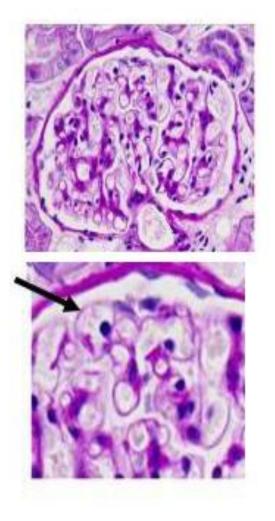
Dr Esmat Abdollahpour

Assistant professor of TUMS, shariati hospital

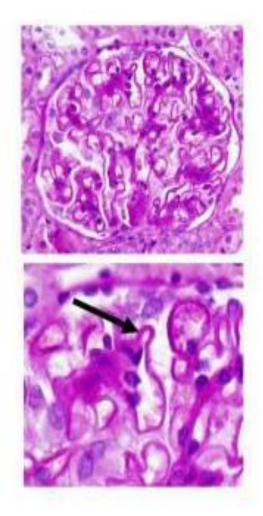
Trends in Toronto Glomerulonephritis Registry: 1975–2015


	1975-1979	1980–1984	1985-1989	1990–1994	1995–1999	2000-2004	2005-2011	2012-2015 ^a	Total
MN	134	172	171	164	129	138	230	168	1306
MPGN	99	67	33	46	37	22	34	N/A	329
FSGS	141	164	163	239	311	318	338	288	1962
IGA	129	215	227	262	309	299	349	286	2076
LUPUS	170	191	143	174	136	130	262	N/A	1206
Vasculitis	29	66	76	93	76	87	152	N/A	579

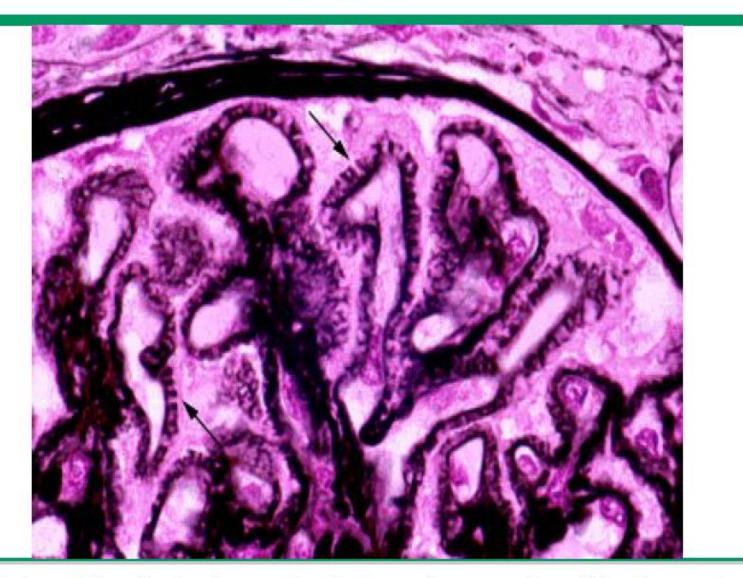
Recognized causes of anti-PLA2R/THSD7A—negative secondary membranous nephropathy

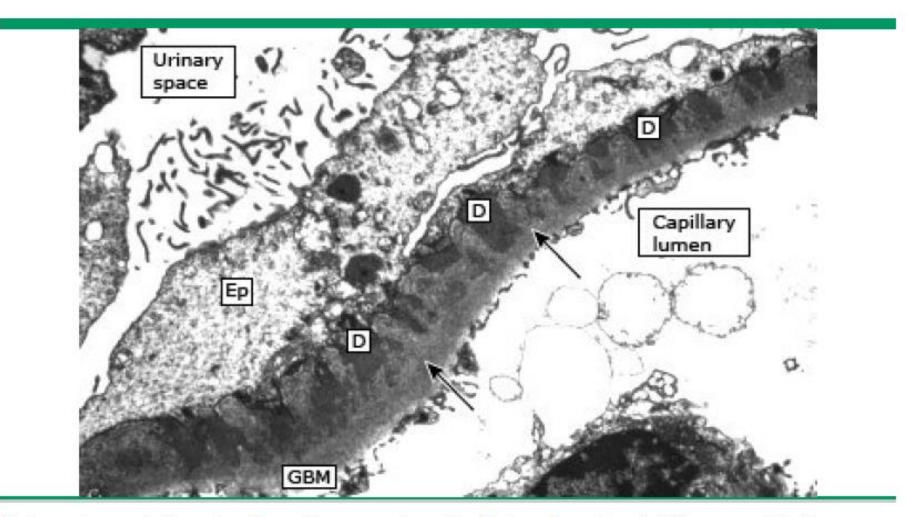

Cause	Examples
Infections	HBV, HCV, HIV, parasites (filariasis, schistosomiasis, malaria), leprosy, syphilis, hydatid disease, sarcoid
Malignancy (20% in patients >57,4% <57)	Solid tumors (lung 26%, prostate 15%, hematologic [plasma cell dyscrasias, non-Hodgkin lymphoma, CLL] 14%, colon 11%), mesothelioma, melanoma, pheochromocytoma; some benign tumors
Autoimmune diseases	SLE (class V), thyroiditis, diabetes, rheumatoid arthritis, Sjogren syndrome, dermatomyositis, mixed connective tissue disease, ankylosing spondylitis, retroperitoneal fibrosis Anti-GBM disease, IgA N, ANCA-associated vasculitis IgG4 disease Membranous-like glomerulopathy with masked IgG k deposits
Alloimmune diseases	Graft versus host disease, autologous stem cell transplants, de novo MN in transplants/transplant glomerulopathy
Drugs/toxins	NSAIDs, COX2 inh, gold, d-penicillamine, captopril, probenecid, sulindac, anti-TNFa, Mercury, lithium, hydrocarbons, formaldehyde, environmental air pollution

Clinical manifestations of primary membranous nephropathy at presentation and during the course of the disease


Clinical manifestations	Initially	During course	comments
Nephrotic syndrome			
Proteinuria.3.5 g/d	60% (25-30% subneprotic)	75%	
Edema	60%	75%	
Hypoalbuminuria	60%	75%	Risk increases with serum albumin ,2.8 g/dl
Hyperlipidemia	50%	65%	
Thromboemboli	<1%	7%	
Hematuria	50%	60%	
Reduced GFR	20%	40%	
ESRD	NA	10%–20% (treated) to 33% (untreated)	
Hypertension	30%	Up to 50%	

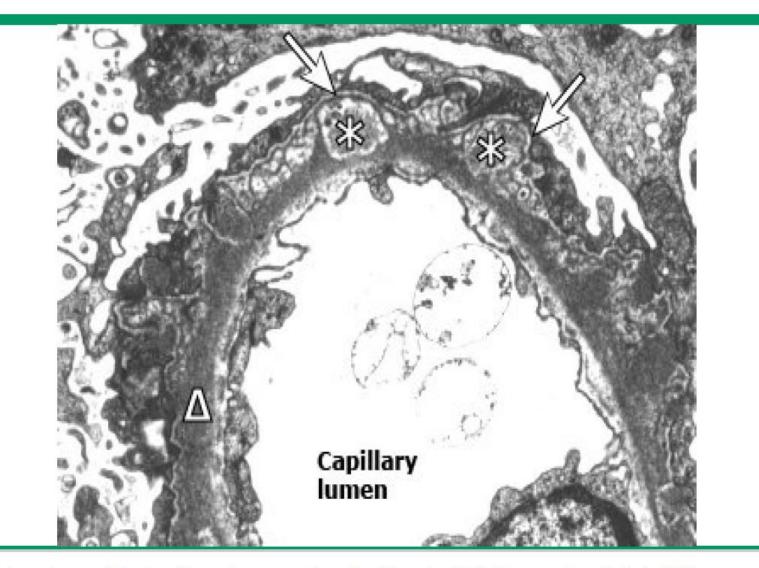
Normal glomerular capillaries with thin walls


Membranous glomerulopathy with thick capillary walls

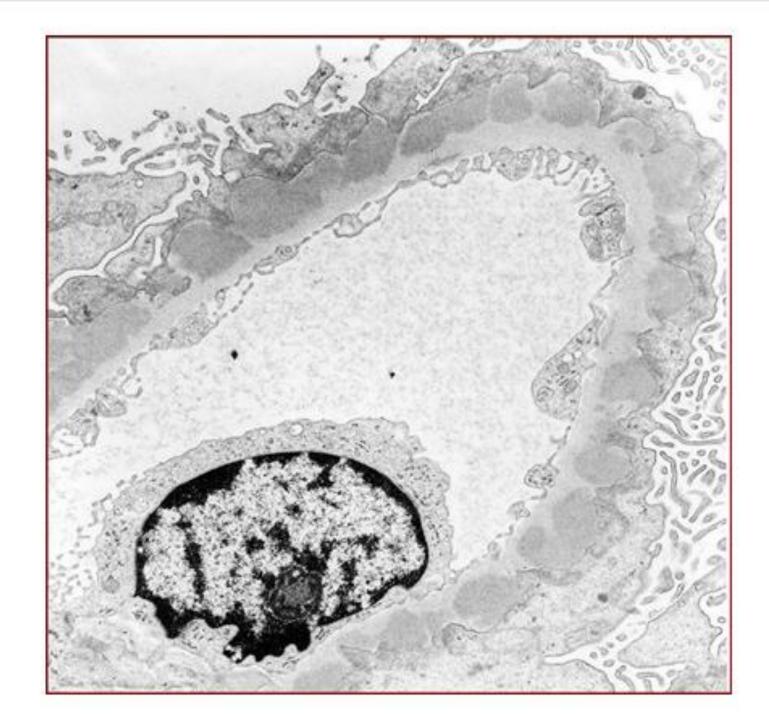


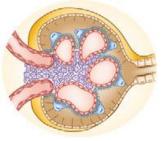
Glomerulus from a patient with primary membranous nephropathy showing the pathognomonic "spikes" of basement membrane projecting from the outer surface of the glomerular basement membrane (arrows) when stained with silver-methenamine

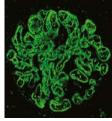
Silver stain in membranous nephropathy



Light micrograph silver stain of membranous nephropathy shows a spike appearance (arrows). The spikes represent new basement membrane growing between the subepithelial immune deposits, which are visible on electron microscopy but not with this stain. Electron micrograph showing membranous nephropathy




Electron micrograph shows stage II membranous nephropathy. Electron-dense deposits (D) are present in the subepithelial space across the glomerular basement membrane (GBM) and under the epithelial cells (Ep). New basement membrane is growing between the deposits, leading to a spike appearance on silver stain.


Electron micrograph in stage III membranous nephropathy

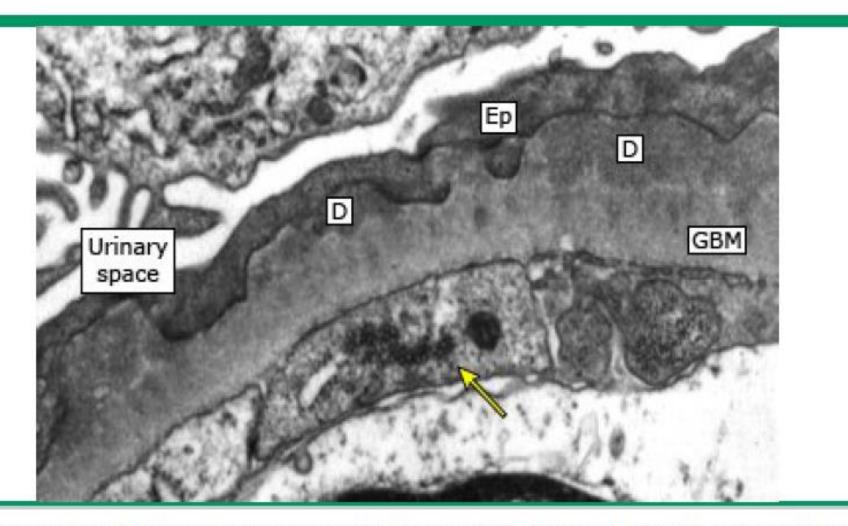
Electron micrograph in stage III membranous nephropathy. The subepithelial immune deposits (asterisk) have a lucent, moth-eaten appearance and have been incorporated into the glomerular basement membrane (Δ) as new basement membrane has grown around the deposits (arrows).

Finding that should prompt careful search for secondary causes of MN

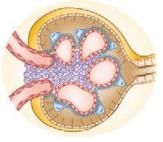
Electron-dense deposits in subendothelial or mesangial locations

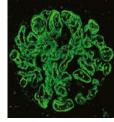
Significant mesangial or endothelial cell proliferation

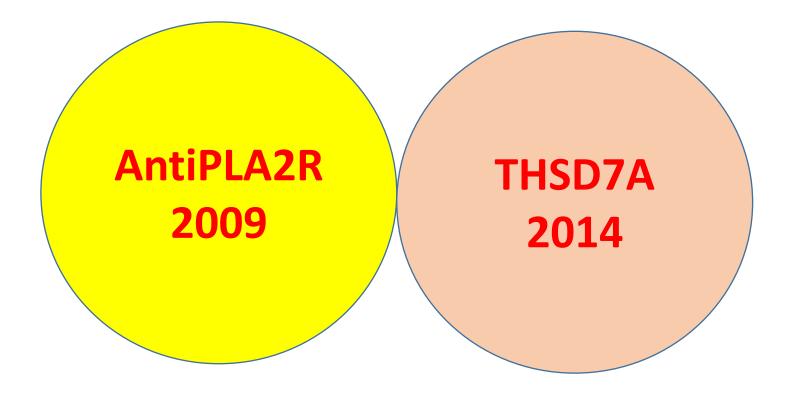
Crescents

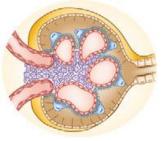

Tubular basement membrane staining

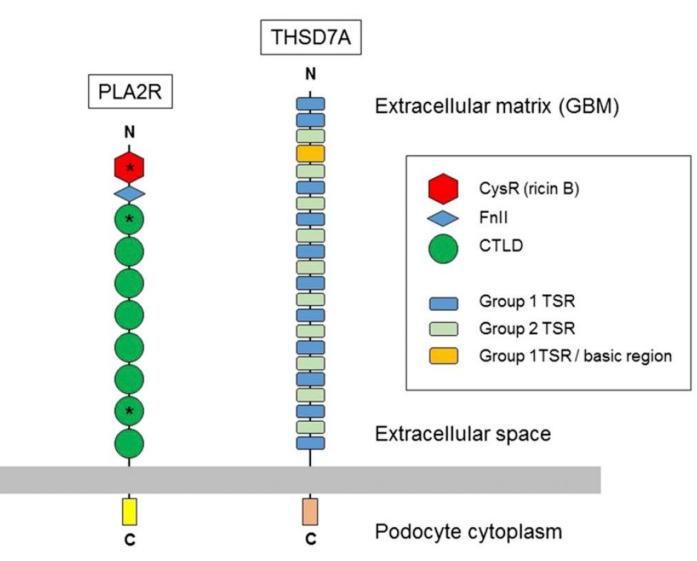
Dominant deposition of IgG1/IgG3, IgM, IgA, or C1q

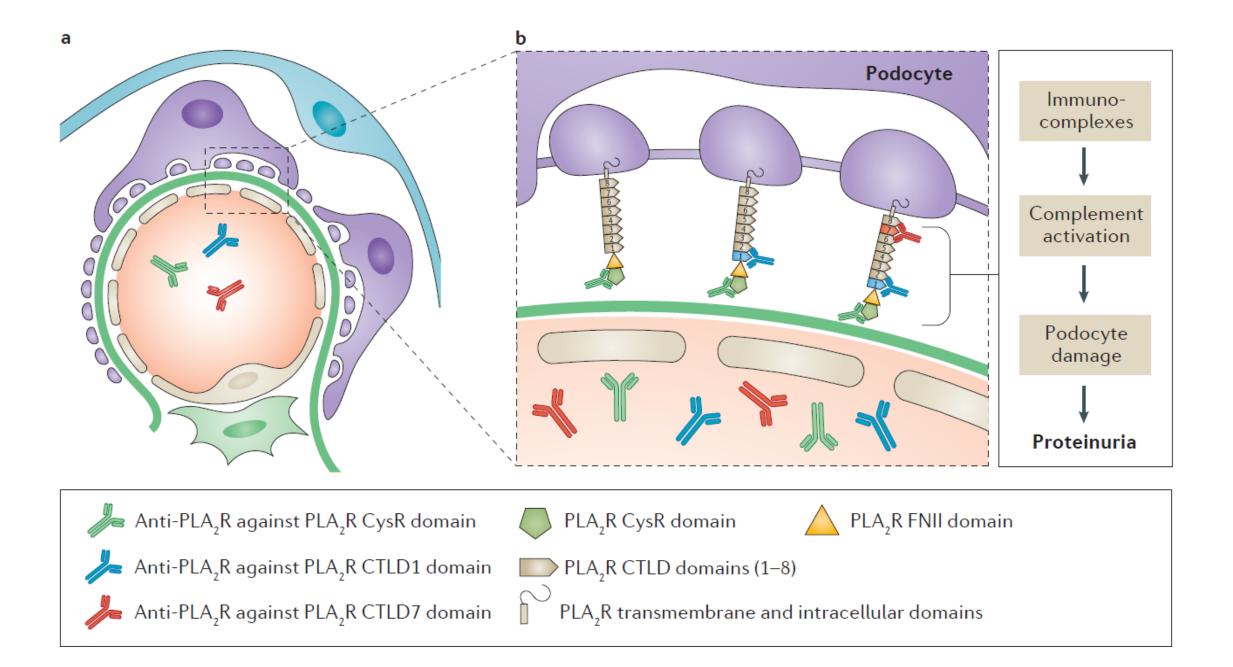

Endothelial tubuloreticular inclusions by electron microscopy

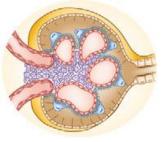

Intraglomerular inflammatory cell infiltrates (cancer)

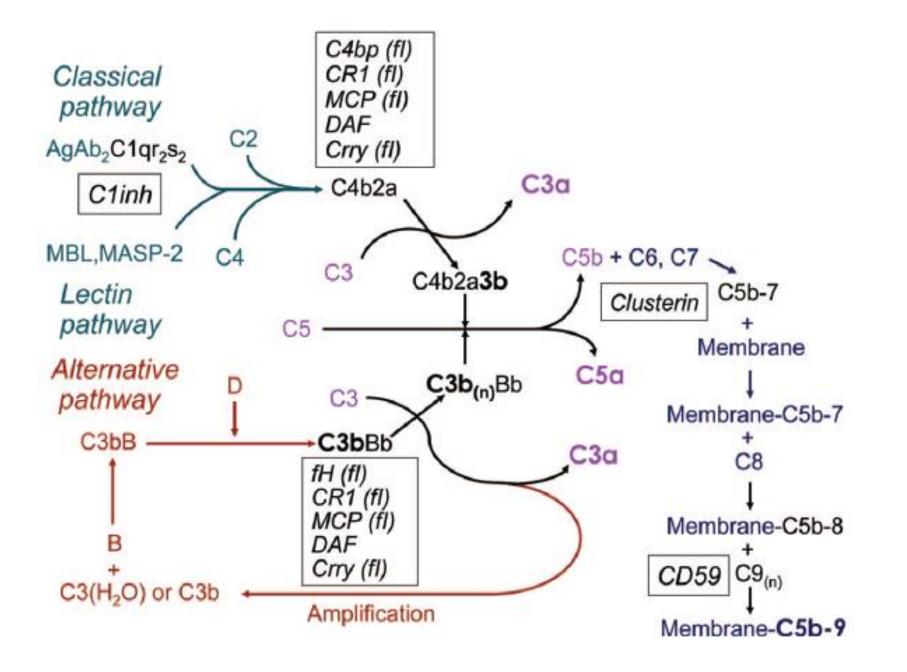

Electron micrograph showing lupus membranous nephropathy

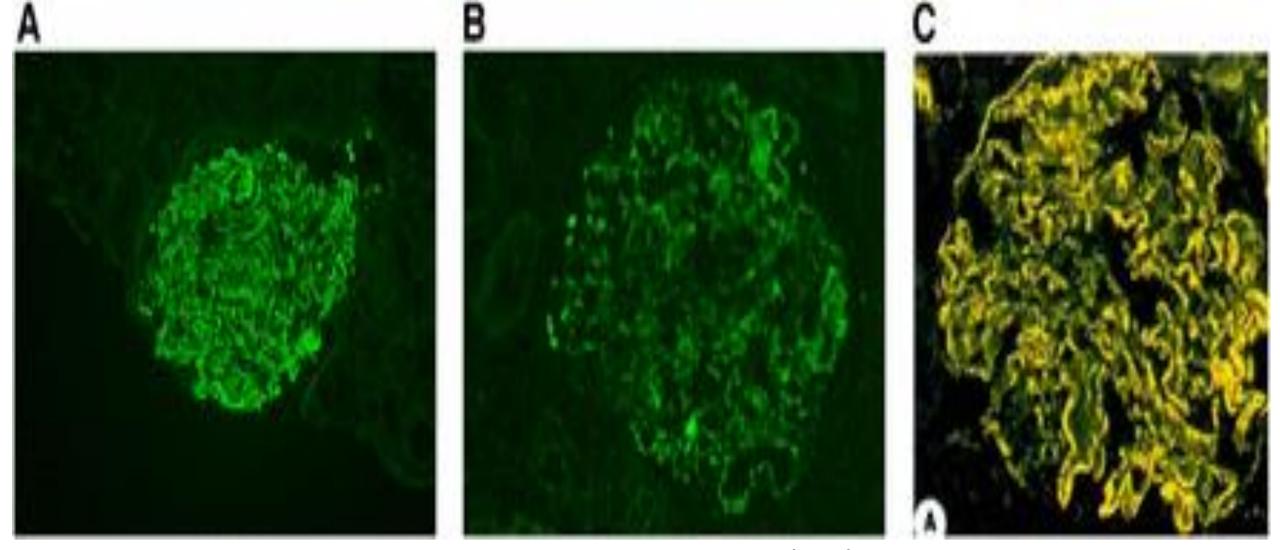



Electron micrograph of lupus membranous nephropathy. The subepithelial immune deposits (D) are characteristic of any form of membranous nephropathy, but the intraendothelial tubuloreticular inclusions (arrow) strongly suggest underlying lupus.

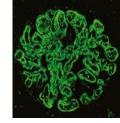


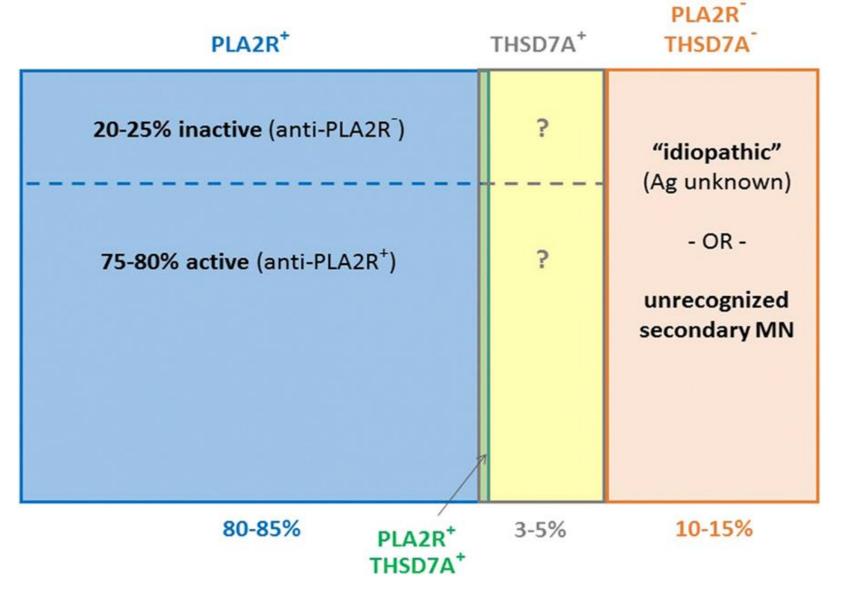




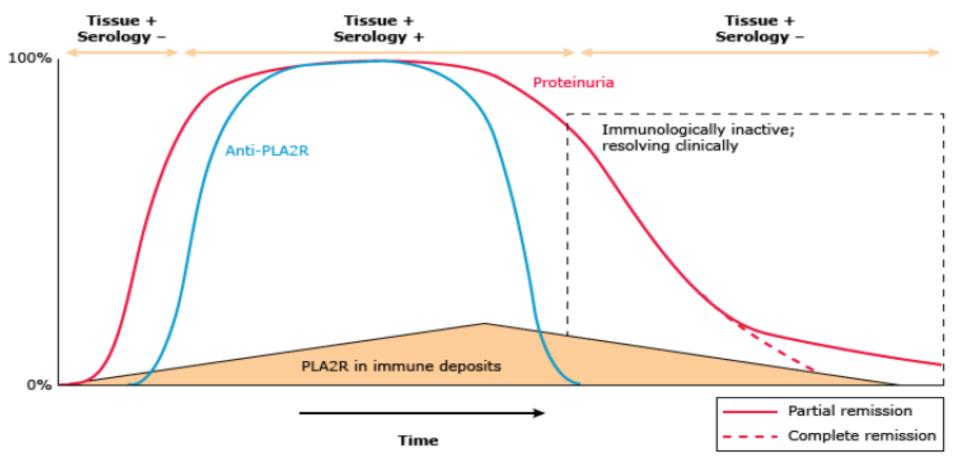


A schematic of the domain structures of PLA2R and THSD7A demonstrates that both proteins are large transmembrane glycoproteins with short cytoplasmic tails

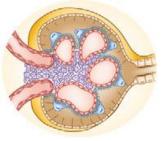


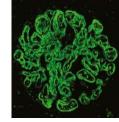


Immunofluorescence microscopy in primary membranous nephropathy (PMN). (A) Finely granular staining for IgG, predominately IgG4, present uniformly in a subepithelial distribution in all glomeruli in a patient with PLA2R-associated PMN. (B) Finely granular staining for PLA2R antigen that colocalizes with IgG4 in a patient with PMN. (C) Finely granular staining for the complement membrane attack complex, C5b-9, in a patient with active PMN

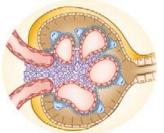

Interpretation of serum anti-podocyte antibody and glomerular antigen staining in primary membranous nephropathy				
Serum Antibody (+/-)	Glomerular Antigen(+/-)	Percent of Patients Who Underwent Biopsy, %	Diagnosis	
Anti-PLA2R (+)	PLA2R (+)	70	PLA2R-mediated PMN (active)	
Anti-PLA2R (-)	PLA2R (+)	15	PLA2R-mediated PMN (inactive)	
Anti-THSD7A (+)	THSD7A (+)	3-5	THSD7A-mediated PMN (active)	
Anti-THSD7A (-)	THSD7A (+)	unknown	THSD7A-mediated PMN (inactive)	
Anti-PLA2R/THSD7A (-)	PLA2R/THSD7A (-)	10	Non-PLA2R/THSD7A– mediated anti podocyte Ab (pathogenesis Unknown)	

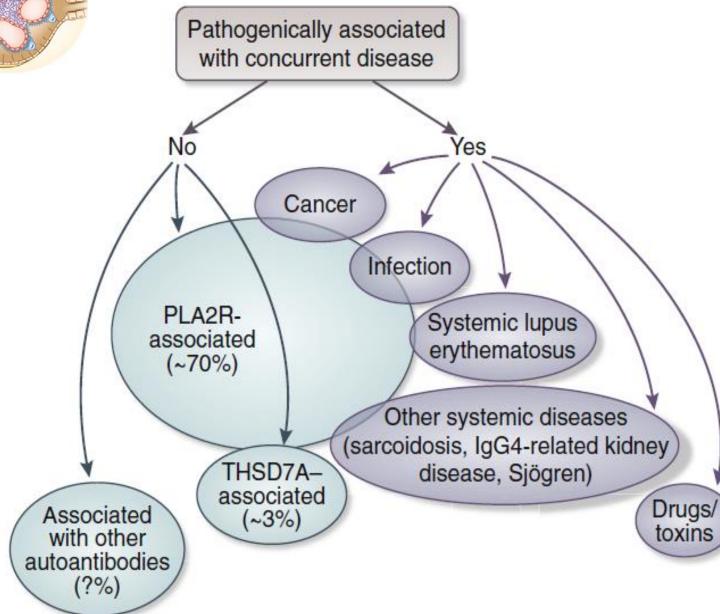
This schematic (not to scale) presents a categorization of primary MN into subgroups on the basis of association with the two known antigens, PLA2R and THSD7A

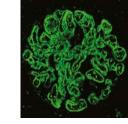


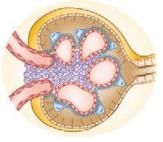

Schematic representation of the temporal association of serological tests for anti-PLA2R, tissue staining for PLA2R, and clinical activity represented by proteinuria. Note that tissue staining for PLA2R may precede the appearance of circulating anti-PLA2R and persist after the antibodies disappear from circulation. Resolution of proteinuria lags behind immunological remission.

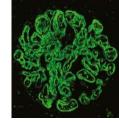
Clinical and translational correlates of circulating levels of anti-PLA2R


- Anti-PLA2R antibody is about 80% sensitive and 100%specific for PMN(although rare patients with sarcoid, HBV, HCV, HIV, and cancer have been reported)
- Anti-PLA2R antibody can be present for many months before proteinuria appears
- In non-nephrotic patients, low, or declining, anti-PLA2R levels predict spontaneous remission and high levels predict progression to nephrotic syndrome
- Anti-PLA2R–negative patients can become positive later
- High antibody levels (before and after treatment) correlate with proteinuria, response to therapy, and (after therapy) long-term outcomes
- Patients with higher antibody levels require more prolonged immunosuppression to achieve remission rates comparable to those with lower levels
- Expansion of the specificity of anti-PLA2R antibody to include additional epitopes (epitope spreading) correlates with a worse prognosis
- Patients with IgG4 antibody directed only at the cysteine-rich epitope of PLA2R have a higher rate of spontaneous remission
- Anti-PLA2R levels go down in remission and return with relapse
- Elevated anti-PLA2R levels after treatment predict relapse
- Elevated anti-PLA2R levels at the time of transplantation predict recurrence (especially if DQA1a05:01/05 positive)
- Disappearance of anti-PLA2R antibodies (immunologic remission) precedes renal remission (disappearance of proteinuria) by weeks to months
- Patients previously positive for anti-PLA2R/THSD7A who become negative will exhibit positive glomerular staining for weeks to months
- >50% of cases of pediatric PMN are PLA2R-positive

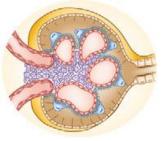




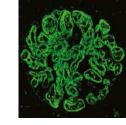

THSD7A, Anti PLA2R and malignancies Cause or coincident?



- Presence of such antibodies does not rule out the concurrence of infection, malignancy and does not obviate the need for an infectious work-up and ageappropriate cancer screening
- Detection of anti-PLA2R antibodies in a substantial minority of patients with hepatitis infection or with sarcoidosis
- possible association between THSD7A antibodies and cancer.

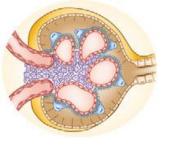


IMMUNOLOGICAL REMISSION IN PLA2R-ANTIBODY– ASSOCIATED MEMBRANOUS NEPHROPATHY IN A KIDNEY TRANSPLANT PATIENT AFTER EXCISION OF BREAST CANCER


Ali Al Azzawi1, Aldo Torres-Ortiz1, Youssef Al hmada1, Wisit Wisit Cheungpasitporn1. 1University of Mississippi Medical Center, Jackson, MS, United States

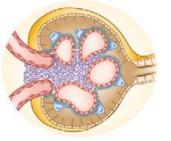
a case of coexistent PLA2R-positive MN and breast cancer after kidney transplant (KTx), who had immunological remission in PLA2R-Ab and reduction of proteinuria after excision of breast cancer

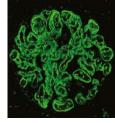
NKF 2019 Spring Clinical Meetings, AJKD Vol 73 | Iss 5 | May 2019

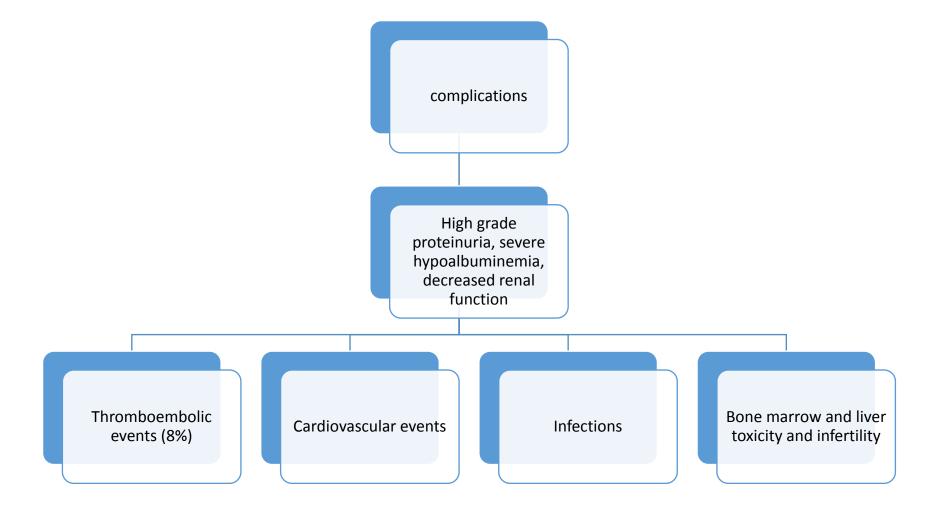


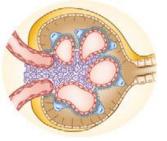
Is serial monitoring of Anti PLA2R antibodies during treatment recommended?

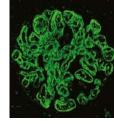
Measuring PLA2R antibodies in patients with a recurrence or worsening of proteinuria should help distinguish between relapse and other causes of proteinuria

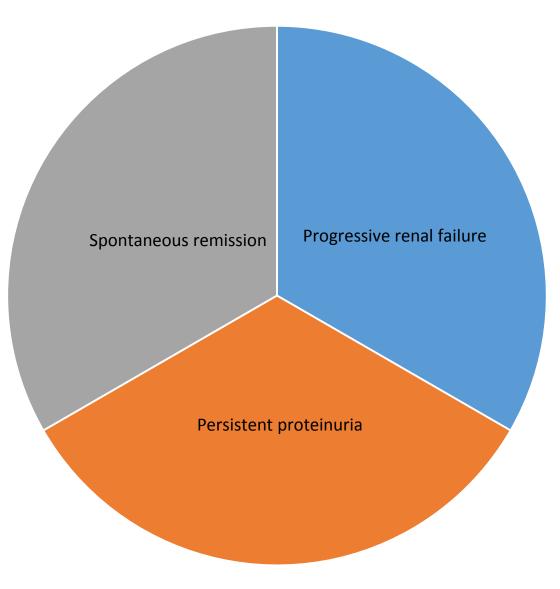

Risk factors for progression	Good prognosis
Age	Complete remission of proteinuria
Male sex	Partial remission of proteinuria
Decreased GFR on presentation	Long duration of remission
Increased excretion of some LMW markers such as β2 microglobulin	
Persistent elevated anti-PLA2R or THSD7A levels after therapy	Low anti-PLA2R or THSD7A levels or decreased levels
Anti-PLA2R against CTLD1, CTLD7 domain*	Anti-PLA2R against CysR domain
C3 staining in the biopsy sample	
Increased urinary excretion of C3dg and C5b-9	
Risk alleles*: HLA-DQR1; PLA2R1 HLA-DRB	

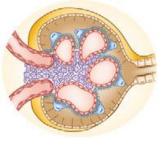

*Presence of risk alleles for both HLA and PLA2R raises the risk for PMN up to 79-fold

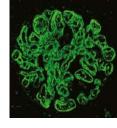

Upregulated microRNAs in membranous glomerulonephropathy are associated with significant downregulation of IL6 and MYC mRNAs

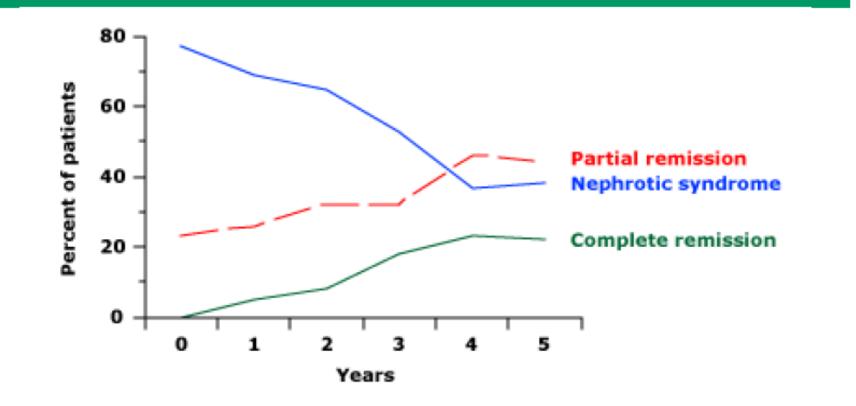

Cristina Barbagallo^{1*} | Roberta Passanisi^{1,2*} | Federica Mirabella¹ | Matilde Cirnigliaro¹ | Arianna Costanzo³ | Giovanni Lauretta¹ | Davide Barbagallo¹ | Cristina Bianchi⁴ | Fabio Pagni⁵ | Sergio Castorina^{2,6} | Antonio Granata^{7†} | Cinzia Di Pietro^{1†} | Marco Ragusa^{1,8†} | Lorenzo S. Malatino^{3†} | Michele Purrello^{1†}


Ten miRNAs (let-7a-5p, let-7b-5p, let-7c-5p, let-7d-5p, miR-107, miR-129-3p, miR-423-5p, miR-516-3p, miR-532-3p, and miR-1275) were differentially expressed (DE) in MGN biopsies compared to unaffected controls

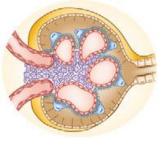




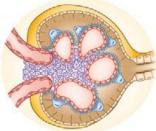


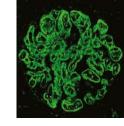


Rule of thirds

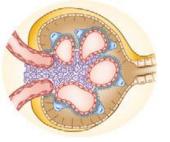


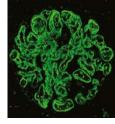
High incidence of remission in untreated membranous nephropathy

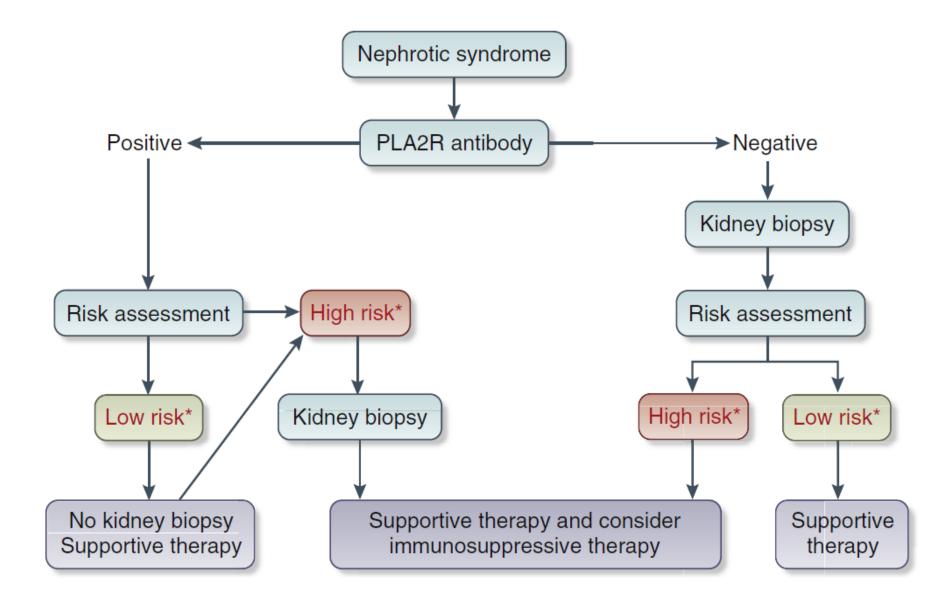




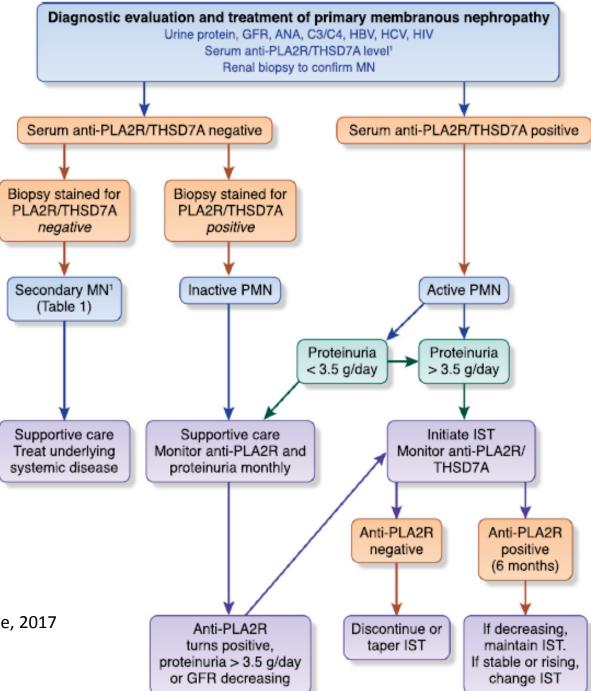
Course of 100 consecutive untreated patients with idiopathic membranous nephropathy. Over a five-year period, there was a progressive increase in the incidence of partial or complete remission, while the incidence of the nephrotic syndrome fell.


Complete remission	• Proteinuria <0.3 g/d	
Partial remission	 >50% reduction from baseline and between 0.3 and 3.5 g/d stable GFR 	
No remission	<50% reductionOr >3.5 g/d	
relapse	Recurrence of >3.5 g/d after remission	

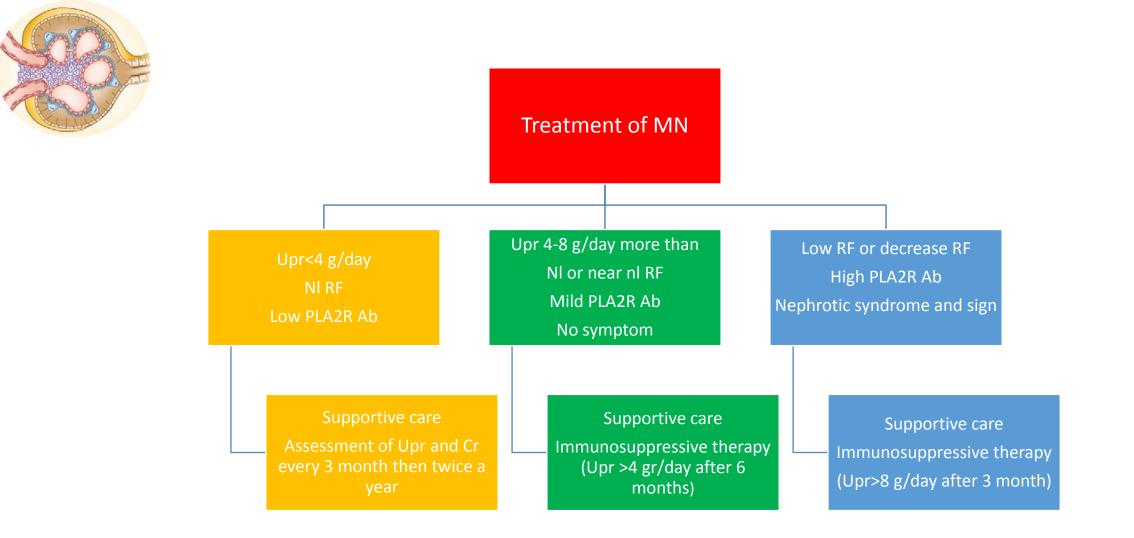


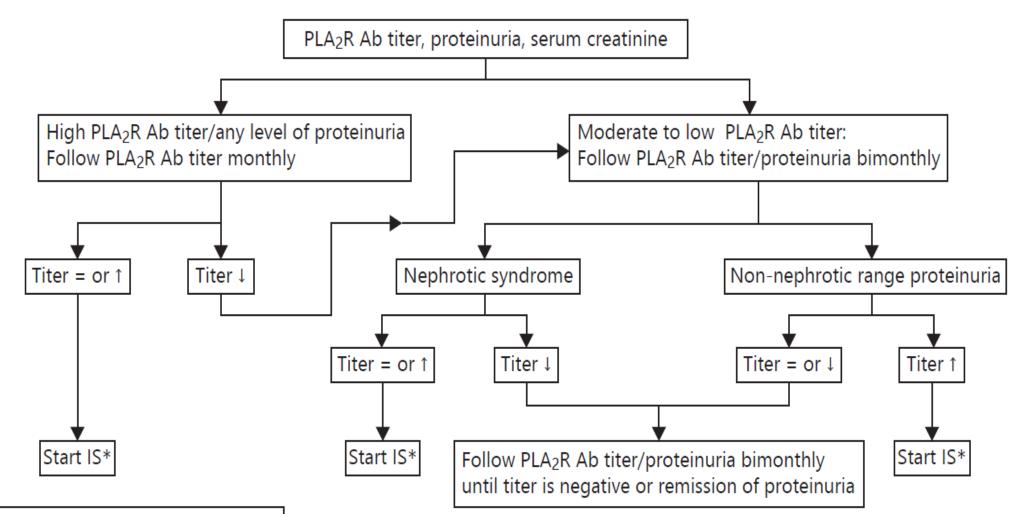

Factors associated with the risk of progressive loss of kidney function in patients with membranous nephropathy

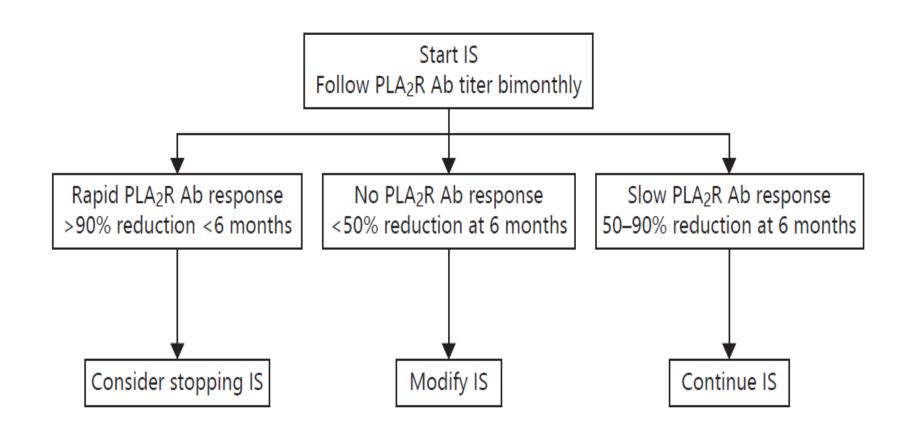
Low risk	High risk
Proteinuria <3.5 g/d	 Serum creatinine >1.5 mg/dl (133 µmol/l) Decrease in eGFR by ≥ 20% over any time period during the preceding 12 months not explained otherwise^a Proteinuria >8 g/d for > 6 mo Presence of low-molecular-weight proteinuria Urine IgG > 250 mg/24 h PLA2R antibody levels and evolution^b

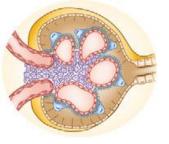


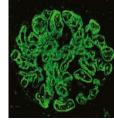
Proposed algorithm for the diagnosis of membranous nephropathy



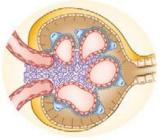


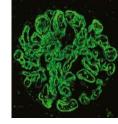

Clin J Am Soc Nephrol 12: 983–997, June, 2017



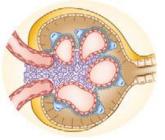

*Unless:

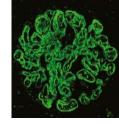
- SCreat >3.5 mg/dL (>309 µmol/L)
- eGFR <30 mL/min/1.73 m²
- Kidney size <8 cm
- Concomitant severe infections

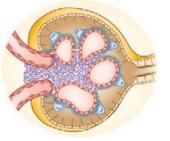

Am J Nephrol 2018;47(suppl 1):30–42

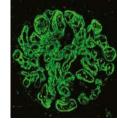


The Remission Clinic protocol

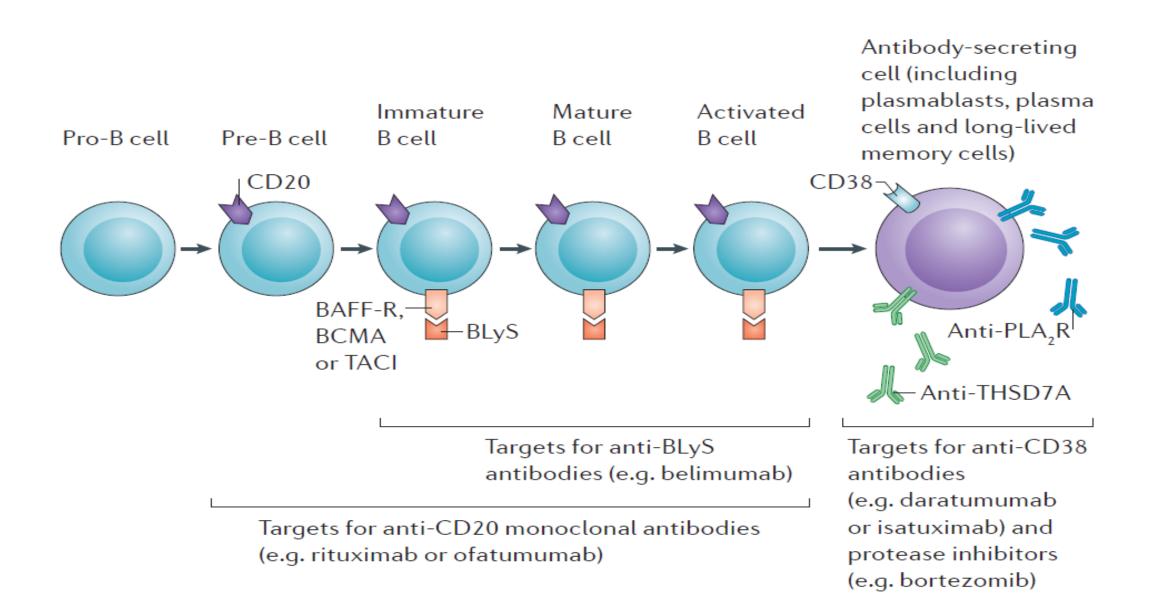

- Low sodium diet with or without diuretics and protein intake 0.8–1.0 mg/kg per day
- Dual renin–angiotensin system blockade with maximum tolerated doses of ACEIs and ARBs
 - Start and up-titrate an ACEI (or ARB)
 - Start and up-titrate an ARB (or ACEI)
- Start and up-titrate other antihypertensive agents to achieve the maximum tolerated reduction in blood pressure (consider dihydropyridine calcium-channel blockers as a last resort)
- Add a lipid-lowering agent

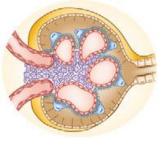



Treatment of membranous nephropathy, conventional immunosuppressive protocol

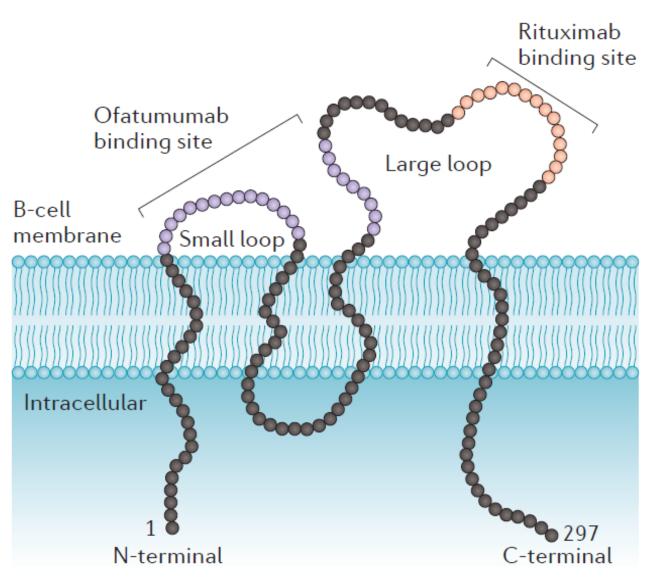

Regimen	Drug	Dose	Schedule			
Alkylating agents plus steroid combination therapy [‡]						
Chlorambucil cyclical therapy	Chlorambucil	0.2 mg/kg per day	Months 2, 4, and 6			
	Prednisolone	0.5 mg/kg per day	Months 1, 3, and 5			
	Methylprednisolone	1 g IV	Three consecutive days at start of months 1, 3, and 5			
Cyclophosphamide cyclical therapy	Cyclophosphamide	2.5 mg/kg per day [§]	Months 2, 4, and 6			
	Prednisolone	0.5 mg/kg per day	Months 1, 3, and 5			
	Methylprednisolone	1 g IV	Three consecutive days at start of months 1, 3, and 5			
Cyclophosphamide daily therapy	Cyclophosphamide	1.5 mg/kg per day	Months 1–6 ^{II}			
	Prednisolone	0.5 mg/kg every second day	Months 1–5, then taper dose to stop in 6–8 weeks			
	Methylprednisolone	1 g IV	Three consecutive days at start of months 1, 3, and 5			

Calcineurin inhibition therapy ¹					
Ciclosporin regimen	Ciclosporin	lnitial dose 3.5 mg/kg per day, trough level 125–225 μg/l	Months 1–6, then taper dose by 25% each month; continue treatment at 50% of dose until 12 months, then taper to lowest possible maintenance dose [#]		
	Prednisolone**	0.15 mg/kg per day	Months 1–6, then taper dose (maximum of 15 mg)		
Tacrolimus regimen	Tacrolimus	Initial dose 0.05 mg/kg per day, achieve trough level 3–5 ng/l; if remission is not achieved after 2 months, increase to 5–8 ng/l	Months 1–12, then taper to lowest possible maintenance dose ^{II}		
	Prednisolone**	0.15 mg/kg per day	Months 1–6, then taper dose (maximum of 15 mg)		





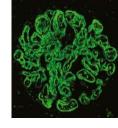
Target	Drug	Dose	Schedule
Anti-CD20 monoclonal antibodies*	Rituximab	 375 mg/m² intravenously 375 mg/m² intravenously 1,000 mg intravenously 	 Every week for 4 weeks B cell-driven treatment[‡] Days 1 and 15
	Ofatumumab	300 mg intravenously	B cell-driven treatment [‡]
Anti-BLyS monoclonal antibodies§	Belimumab	10 mg/kg intravenously	 Every 4 weeks (if urinary protein:creatinine ratio <1,000 mg/mmol) Every 2 weeks (if urinary protein:creatinine ratio >1,000 mg/mmol)
Plasma cell-targeted protocols (proteasome inhibitors ^{II})	Bortezomib	1.3 mg/m² subcutaneously	Four doses over 2 weeks


A second 375 mg/m2 dose of rituximab or a second dose of 300 mg of ofatumumab are administered 1 week after the first infusion if >5 circulating B cells per mm3 remain

Nature review, nephrology, 13(563-579), September 2017

The molecular configuration of the CD20 molecule

Nephrology 21 (2016) 139-146

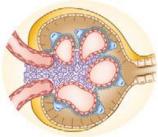

Original Article

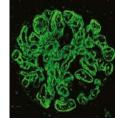
Tacrolimus combined with corticosteroids versus Modified Ponticelli regimen in treatment of idiopathic membranous nephropathy: Randomized control trial

RAJA RAMACHANDRAN,¹ HARSHA KUMAR HN,¹ VINOD KUMAR,¹ RITAMBHRA NADA,² ASHOK KUMAR YADAV,¹ AJAY GOYAL,¹ VIVEK KUMAR,¹ MANISH RATHI,¹ VIVEKANAND JHA,¹ KRISHAN LAL GUPTA,¹ VINAY SAKHUJA¹ and HARBIR SINGH KOHLI¹

Departments of ¹Nephrology and ²Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India

Both TAC and MPR are comparable in induction remission, but with different adverse effect profile and with higher relapse rate

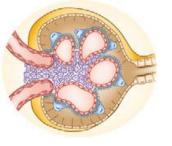

Safety of Rituximab Compared with Steroids and Cyclophosphamide for Idiopathic Membranous Nephropathy

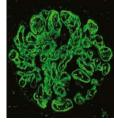

Jan A.J.G. van den Brand,* Piero Ruggenenti,^{†‡} Antonietta Chianca,[‡] Julia M. Hofstra,* Annalisa Perna,[‡] Barbara Ruggiero,[‡] Jack F.M. Wetzels,* and Giuseppe Remuzzi^{†‡}

*Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands; [†]Unit of Nephrology, Azienda Socio Sanitaria Territoriale Ospedale Papa Giovanni XXIII, Bergamo, Italy; and [‡]IRCCS - Instituto di Ricerche Farmacologiche "Mario Negri", Department of Renal Medicine, Clinical Research Center for Rare Diseases "Ado e Cele Daccò", Ranica, Bergamo, Italy

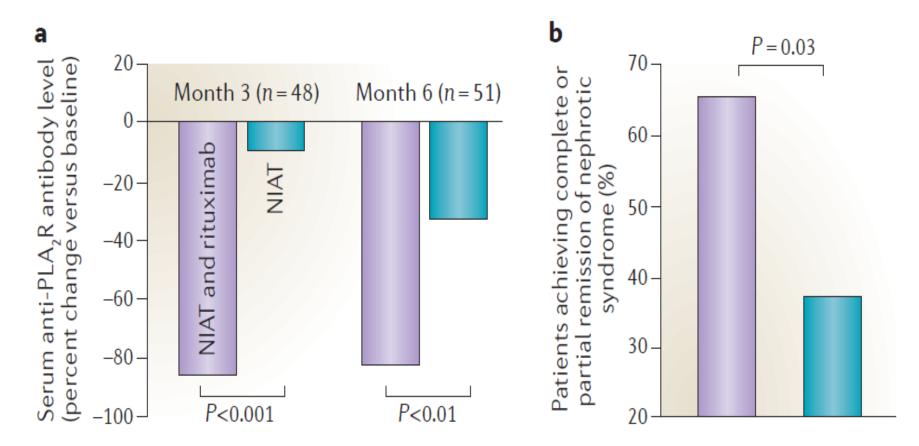
Rituximab (RTX) may be a safer alternative, lower partial remission rates with rituximab versus cyclophosphamide, rates of complete remission and the composite renal end point did not differ significantly between groups

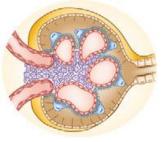
J Am Soc Nephrol 28: 2729–2737, 2017

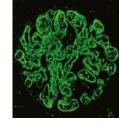




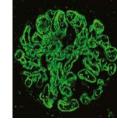
Rituximab for Severe Membranous Nephropathy: A 6-Month Trial with Extended Follow-Up


Karine Dahan,* Hanna Debiec,^{†‡} Emmanuelle Plaisier,*^{†‡} Marine Cachanado,[§] Alexandra Rousseau,[§] Laura Wakselman,[§] Pierre-Antoine Michel,* Fabrice Mihout,* Bertrand Dussol,^{||} Marie Matignon,[¶] Christiane Mousson,** Tabassome Simon,[§] and Pierre Ronco,*^{†‡} on behalf of the GEMRITUX Study Group


*Department of Nephrology and Dialysis, Assistance Publique Hôpitaux de Paris, Hôpital Tenon, Paris, France; †Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Paris, France; ‡Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1155, Paris, France; [§]Department of Clinical Pharmacology and Unité de Recherche Clinique, Assistance Publique Hôpitaux de Paris, Hôpital Saint Antoine, Paris, France; ^{II}Department of Nephrology and Transplantation, Assistance Publique-Hôpitaux de Marseille, Hôpital de la Timone, Marseille, France; ^{II}Department of Nephrology and Transplantation, Assistance Publique Hôpitaux de Paris, Centre Hôpitaux de Paris, Hôpital Henri Mondor, Creteil, France; and **Department of Nephrology and Transplantation, Centre Hospitalier Universitaire, Dijon, France



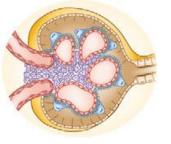
Key findings from the GEMRITUX trial



A European multicentre and open-label controlled randomized trial to evaluate the efficacy of Sequential treatment with TAcrolimus–Rituximab versus steroids plus cyclophosphamide in patients with primary MEmbranous Nephropathy: the STARMEN study

Jorge Rojas-Rivera^{1,2}, Gema Fernández-Juárez^{2,3}, Alberto Ortiz^{1,2}, Julia Hofstra⁴, Loreto Gesualdo⁵, Vladimir Tesar⁶, Jack Wetzels⁴, Alfons Segarra^{2,7}, Jesus Egido¹, and Manuel Praga^{2,8}, on behalf of the STARMEN Investigators

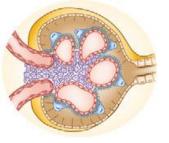
Clinical Kidney Journal, 2015, vol. 8, no. 5, 503–510

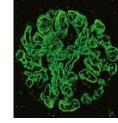


A Multicenter Randomized Controlled Trial of Rituximab versus Cyclosporine in the Treatment of Idiopathic Membranous Nephropathy (MENTOR)

Fernando C. Fervenza^a Pietro A. Canetta^b Sean J. Barbour^c Richard A. Lafayette^d Brad H. Rovin^e Nabeel Aslam^f Michelle A. Hladunewich^g Maria V. Irazabal^a Sanjeev Sethi^h Debbie S. Gipsonⁱ Heather N. Reich^g Paul Brenchley^j Matthias Kretzler^k Jai Radhakrishnan^b Lee A. Hebert^e Patrick E. Gipsonⁱ Leslie F. Thomas¹ Ellen T. McCarthy^m Gerald B. Appel^b J. Ashley Jeffersonⁿ Alfonso Eirin^a John C. Lieske^a Marie C. Hogan^a Eddie L. Greene^a John J. Dillon^a Nelson Leung^a John R. Sedor^o Dana V. Rizk^p Samuel S. Blumenthal^q Lada B. Lasic^r Luis A. Juncos^s Dollie F. Green^t James Simon^u Amy N. Sussman^v David Philibert^w Daniel C. Cattran^g for the Mentor Consortium group

Nephron 2015;130:159-168




ORIGINAL ARTICLE

Rituximab or Cyclosporine in the Treatment of Membranous Nephropathy

F.C. Fervenza, G.B. Appel, S.J. Barbour, B.H. Rovin, R.A. Lafayette, N. Aslam, J.A. Jefferson, P.E. Gipson, D.V. Rizk, J.R. Sedor, J.F. Simon, E.T. McCarthy, P. Brenchley, S. Sethi, C. Avila-Casado, H. Beanlands, J.C. Lieske, D. Philibert, T. Li, L.F. Thomas, D.F. Green, L.A. Juncos, L. Beara-Lasic, S.S. Blumenthal, A.N. Sussman, S.B. Erickson, M. Hladunewich, P.A. Canetta, L.A. Hebert, N. Leung, J. Radhakrishnan, H.N. Reich, S.V. Parikh, D.S. Gipson, D.K. Lee, B.R. da Costa, P. Jüni, and D.C. Cattran, for the MENTOR Investigators

Rituximab was non inferior to cyclosporine in inducing complete or partial remission of proteinuria at 12 months and was superior in maintaining proteinuria remission up to 24 months.

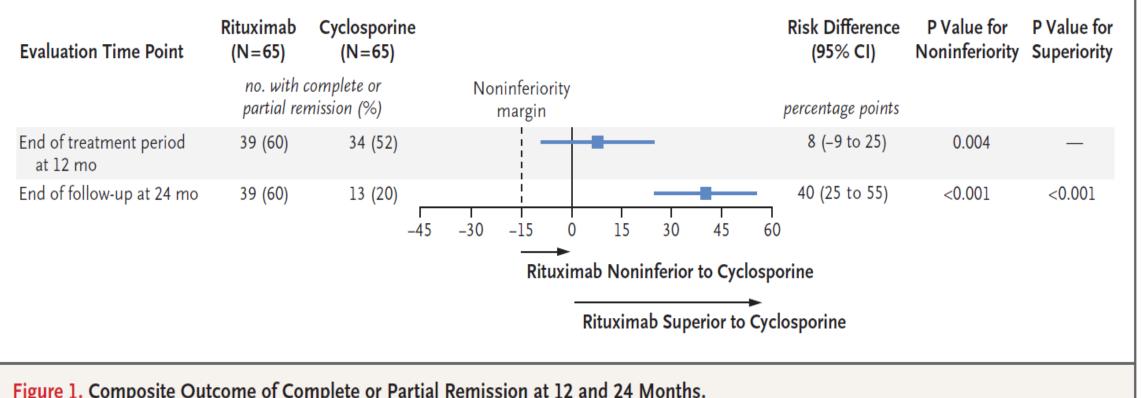
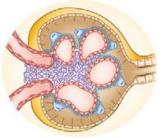
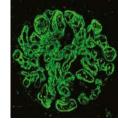
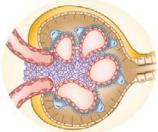
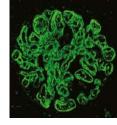




Figure 1. Composite Outcome of Complete or Partial Remission at 12 and 24 Months.

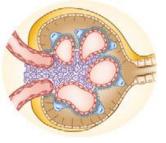



A pilot study to determine the dose and effectiveness of adrenocorticotrophic hormone (H.P. Acthar® Gel) in nephrotic syndrome due to idiopathic membranous nephropathy

Michelle A. Hladunewich¹, Daniel Cattran¹, Laurence H. Beck², Ayodele Odutayo¹, Sanjeev Sethi³, Rivka Ayalon², Nelson Leung⁴, Heather Reich¹ and Fernando C. Fervenza⁴

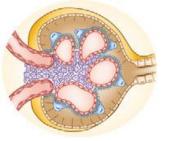
¹Division of Nephrology, University of Toronto for the Toronto Glomerulonephritis Registry, Toronto, ON, Canada, ²Division of Nephrology, Boston University School of Medicine, Boston, MA, USA, ³Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA and ⁴Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA

Nephrol Dial Transplant (2014) 29: 1570–1577

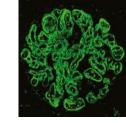


Synthetic ACTH in High Risk Patients with Idiopathic Membranous Nephropathy: A Prospective, Open Label Cohort Study

Anne-Els van de Logt¹ *, Charles H. Beerenhout², Hans S. Brink³, Jos J. van de Kerkhof⁴, Jack F. Wetzels¹, Julia M. Hofstra¹

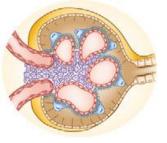

 Radboud university medical center, Radboud Institute for Health Sciences, Department of Nephrology, Nijmegen, The Netherlands, 2 Maxima medical center, Department of Internal Medicine, Veldhoven, The Netherlands, 3 Medisch Spectrum Twente, Department of Internal Medicine, Enschede, The Netherlands,
 Bernhoven Hospital, Department of Internal Medicine, Uden, The Netherlands

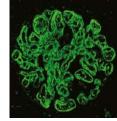
PLOS ONE | journal.pone.0142033 November 12, 2015



ACTH (corticotrophin) therapy in resistant primary membranous nephropathy

- ACTH therapy to 11 patients who had failed treatment with other IS treatments
- corticotrophin 40 IU subcutaneous twice a week for 6 months
- >50% reduction in proteinuria
- 2 patients who developed excessive fluid retention and infection





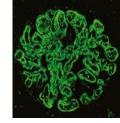
When to stop IS therapy?

Apart from small kidney size there is no other threshold for which treatment is deemed futile even patients with eGFR <30 ml/min/1.73 m2

MN after kidney transplantation

Cumulative risk of disease recurrence: 50-60% over 6 years , 30-35% during first year

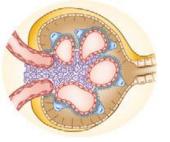

If proteinuria > 1000 mg, treatment with rituximab

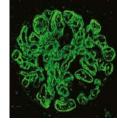

Persistent anti-PLA2R antibodies prior to kidney transplantation are associated with an increased risk of recurrence of membranous nephropathy in the allograft

Giving rituximab several months before transplantation: could prevent recurrence

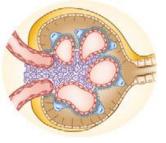
Early diagnosis and early B-cell targeting therapy

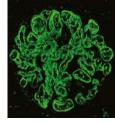
Anti-PLA2R–negative de novo MN, affecting about 2% of all renal transplant recipients




EARLY TREATMENT WITH RITUXIMAB IN RECURRENT MEMBRANOUS NEPHROPATHY AFTER KIDNEY

TRANSPLANT: Nikhil Agrawal1, Sreedhar Adapa2, Venu Madhav Konala3, Hemant Dhingra2, Martha Pavlakis1. 1Beth Israel Deaconess Medical Center, Boston, MA, United States; 2The Nephrology Group, Fresno, CA, United States; 3Ashland Bellefonte Cancer Center, Ashland, KY, United States


Treatment with rituximab early in the disease course appears to be effective and perhaps necessary given less likelihood of spontaneous remission


NKF 2019 Spring Clinical Meetings, AJKD Vol 73 | Iss 5 | May 2019

